- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Balan, Radu (3)
-
Singh, Maneesh (2)
-
Dock, Chris B. (1)
-
Haghani, Naveed (1)
-
Jain, Tushar (1)
-
Sidheekh, Sahil (1)
-
Singh, Maneesh K. (1)
-
Zou, Dongmian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Normalizing flows provide an elegant approach to generative modeling that allows for efficient sampling and exact density evaluation of unknown data distributions. However, current techniques have significant limitations in their expressivity when the data distribution is supported on a lowdimensional manifold or has a non-trivial topology. We introduce a novel statistical framework for learning a mixture of local normalizing flows as “chart maps” over the data manifold. Our framework augments the expressivity of recent approaches while preserving the signature property of normalizing flows, that they admit exact density evaluation. We learn a suitable atlas of charts for the data manifold via a vector quantized autoencoder (VQ-AE) and the distributions over them using a conditional flow. We validate experimentally that our probabilistic framework enables existing approaches to better model data distributions over complex manifolds.more » « less
-
Haghani, Naveed; Singh, Maneesh; Balan, Radu (, AAAI/Graphs and more Complex structures for Learning and Reasoning Workshop)We address the problem of graph regression using graph convolutional neural networks and permutation invariant representation. Many graph neural network algorithms can be abstracted as a series of message passing functions between the nodes, ultimately producing a set of latent features for each node. Processing these latent features to produce a single estimate over the entire graph is dependent on how the nodes are ordered in the graph’s representation. We propose a permutation invariant mapping that produces graph representations that are invariant to any ordering of the nodes. This mapping can serve as a pivotal piece in leveraging graph convolutional networks for graph classification and graph regression problems. We tested out this method and validated our solution on the QM9 dataset.more » « less
-
Zou, Dongmian; Balan, Radu; Singh, Maneesh (, IEEE Transactions on Information Theory)null (Ed.)
An official website of the United States government

Full Text Available